DDMODEL00000089: Chan 2010 - HIV PKPD Viral Load Model

Short description:
A pharmacokinetic-pharmacodynamics-viral load (PKPD-VL) model for human immunodeficiency virus type 1 (HIV-1) [use of differential equations].
Original publication assessed the feasibility of the FOCEI method implemented in NONMEM VI and the SAEM algorithm implemented in Monolix version 2.4 to perform parameter estimation for the PKPD-VD model.
PharmML (0.6) |
|
|
|
Phylinda Chan
|
Context of model development: | Clinical end-point; |
Long technical model description: | Key model features: 2 compartment disposition pharmacokinetic model; An inhibitory Emax model actin on the infection rate of the virus and target CD4+ cells; An effect compartment describing a delay in the effect on viral load; Viral dynamics model; Differential equations.; |
Model compliance with original publication: | Yes; |
Model implementation requiring submitter’s additional knowledge: | No; |
Modelling context description: | The model was used to describe the following in HIV-1 infected asymptomatic patients after initiation of antiretroviral therapy (different doses of maraviroc for 10 days): 1) the time course of plasma maraviroc concentrations; 2) the drug effect of maraviroc; 3) the dynamics and interaction of target CD4+ cells, actively infected CD4+ cells, latently infected CD4+ cells and viruses.; |
Modelling task in scope: | estimation; |
Nature of research: | Early clinical development (Phases I and II); |
Therapeutic/disease area: | Anti-infectives; |
Annotations are correct. |
|
This model is not certified. |
- Model owner: Phylinda Chan
- Submitted: Apr 7, 2016 3:11:56 PM
- Last Modified: May 25, 2016 9:44:37 AM
Revisions
Independent variable TIME
Structural Model sm
Variable definitions
CP=AMT2V2
INH=CP(CP+IC501000)
V=(POVC×AMT5)
dAMT1dTIME=(-K12×AMT1)
dAMT2dTIME=((((K12×AMT1)+(K32×AMT3))-(K23×AMT2))-(K20×AMT2))
dAMT3dTIME=((-K32×AMT3)+(K23×AMT2))
dAMT4dTIME=((LAMBDA-(D×AMT4))-((((1-INH)×BETA)×V)×AMT4))
dAMT5dTIME=((((((QA×(1-INH))×BETA)×V)×AMT4)-(DA0×AMT5))+(AL×AMT6))
dAMT6dTIME=(((((((1-QA)×(1-INH))×BETA)×V)×AMT4)-(DL×AMT6))-(AL×AMT6))
IPRE={(log10((POVC×AMT5))+3) if (AMT5≠0)0 otherwise
Initial conditions
AMT1=0
AMT2=0
AMT3=0
AMT4=0
AMT5=0
AMT6=0
PK Macros
iv(cmt=1,adm=1,Tlag=ALAG1)
iv(cmt=4,p=F4,adm=4)
iv(cmt=5,p=F5,adm=5)
iv(cmt=6,p=F6,adm=6)
Variability Model
Level | Type |
---|---|
DV |
residualError |
ID |
parameterVariability |
Covariate Model
Continuous covariate KA
Continuous covariate V3
Continuous covariate Q
Continuous covariate V2
Continuous covariate CL
Continuous covariate FLAG
Parameter Model
ParametersPOP_RR0;
POP_LAMBDA;
POP_DA0;
POP_IC50MVC;
POP_LAGE;
PPV_IIV_RR0;
PPV_IIV_LAMDBA;
PPV_IIV_DA0;
PPV_IIV_IC50;
RUV_PROP_ERR;
eta_PPV_IIV_RR0∼N(0.0,PPV_IIV_RR0) — ID
eta_PPV_IIV_LAMDBA∼N(0.0,PPV_IIV_LAMDBA) — ID
eta_PPV_IIV_DA0∼N(0.0,PPV_IIV_DA0) — ID
eta_PPV_IIV_IC50∼N(0.0,PPV_IIV_IC50) — ID
eps_RUV_PROP_ERR∼N(0.0,RUV_PROP_ERR) — DV
RR0=(POP_RR0×exp(eta_PPV_IIV_RR0))
LAMBDA=(POP_LAMBDA×exp(eta_PPV_IIV_LAMDBA))
DA0=(POP_DA0×exp(eta_PPV_IIV_DA0))
IC50=(POP_IC50MVC×exp(eta_PPV_IIV_IC50))
RMIC=((RR0-1)×IC50)
D=0.006
QA=0.96
DL=0.0132
AL=0.037
POVC=35.4
BETA=((RR0×D)×DA0)((POVC×LAMBDA)×(QA+((1-QA)×AL)(DL+AL)))
K12=KA
K20=CLV2
K23=QV2
K32=QV3
LagE=POP_LAGE
ALAG1=LagE
F4=LAMBDADRR0
F5={0 if (RR0≤1)((QA+((1-QA)×AL)(DL+AL))×(LAMBDA-(D×F4)))DA0 otherwise
F6={0 if (RR0≤1)((1-QA)×(LAMBDA-(D×F4)))(DL+AL) otherwise
F7=0
Observation Model
Observation IPRE_obs
Continuous / Residual Data
Parameters IPRE_obs=(IPRE+eps_RUV_PROP_ERR)
Estimation Steps
Estimation Step estimStep_1
Estimation parameters
Initial estimates for non-fixed parameters
- POP_RR0=5.94
- POP_LAMBDA=1.04
- POP_DA0=0.692
- POP_IC50MVC=8.66
- POP_LAGE=1.13
- PPV_IIV_RR0=0.558
- PPV_IIV_LAMDBA=1.277
- PPV_IIV_DA0=0.048
- PPV_IIV_IC50=2.28
- RUV_PROP_ERR=0.0445
Estimation operations
1) Estimate the population parameters
- target=NMTRAN_CODE
- cov=true
Step Dependencies
- estimStep_1