DDMODEL00000003: Hamren_2008_diabetes_tesaglitazar

  public model
Short description:
Population PK/PD model describing the interplay between tesaglitazar and fasting plasma glucose, hemoglobin, and glycosylated hemoglobin in type 2 diabetic patients.
PharmML 0.8.x (0.8.1)
  • Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment.
  • Hamrén B, Björk E, Sunzel M, Karlsson M
  • Clinical pharmacology and therapeutics, 8/2008, Volume 84, Issue 2, pages: 228-235
  • Department of Medical Science, Clinical Pharmacology, AstraZeneca R&D Mölndal, Mölndal, Sweden. bengt.hamren@astrazeneca.com
  • Pharmacokinetic (PK) pharmacodynamic (PD) modeling was applied to understand and quantitate the interplay between tesaglitazar (a peroxisome proliferator-activated receptor alpha/gamma agonist) exposure, fasting plasma glucose (FPG), hemoglobin (Hb), and glycosylated hemoglobin (HbA1c) in type 2 diabetic patients. Data originated from a 12-week dose-ranging study with tesaglitazar. The primary objective was to develop a mechanism-based PD model for the FPG-HbA1c relationship. The secondary objective was to investigate possible mechanisms for the tesaglitazar effect on Hb. Following initiation of tesaglitazar therapy, time to new FPG steady state was approximately 9 weeks, and tesaglitazar potency in females was twice that in males. The model included aging of red blood cells (RBCs) using a transit compartment approach. The RBC life span was estimated to 135 days. The transformation from RBC to HbA1c was modeled as an FPG-dependent process. The model indicated that the tesaglitazar effect on Hb was caused by hemodilution of RBCs.
Paolo Magni
Context of model development: Clinical end-point; Mechanistic Understanding;
Model compliance with original publication: Yes;
Model implementation requiring submitter’s additional knowledge: No;
Modelling context description: Pharmacokinetic (PK) pharmacodynamic (PD) modeling was applied to understand and quantitate the interplay between tesaglitazar (a peroxisome proliferator-activated receptor alpha/gamma agonist) exposure, fasting plasma glucose (FPG), hemoglobin (Hb), and glycosylated hemoglobin (HbA1c) in type 2 diabetic patients. Data originated from a 12-week dose-ranging study with tesaglitazar. The primary objective was to develop a mechanism-based PD model for the FPG-HbA1c relationship. The secondary objective was to investigate possible mechanisms for the tesaglitazar effect on Hb. Following initiation of tesaglitazar therapy, time to new FPG steady state was approximately 9 weeks, and tesaglitazar potency in females was twice that in males. The model included aging of red blood cells (RBCs) using a transit compartment approach. The RBC life span was estimated to 135 days. The transformation from RBC to HbA1c was modeled as an FPG-dependent process. The model indicated that the tesaglitazar effect on Hb was caused by hemodilution of RBCs.;
Modelling task in scope: estimation;
Nature of research: Clinical research & Therapeutic use;
Therapeutic/disease area: Endocrinology;
Annotations are correct.
This model is not certified.
  • Model owner: Paolo Magni
  • Submitted: Dec 10, 2015 10:16:55 AM
  • Last Modified: Oct 10, 2016 9:31:51 PM
Revisions
  • Version: 10 public model Download this version
    • Submitted on: Oct 10, 2016 9:31:51 PM
    • Submitted by: Paolo Magni
    • With comment: Update MDL syntax to the version 1.0 and R script to SEE version 2.0.0. Code automatically generated for NONMEM and MONOLIX
  • Version: 9 public model Download this version
    • Submitted on: Jun 2, 2016 8:37:50 PM
    • Submitted by: Paolo Magni
    • With comment: Updated model annotations.
  • Version: 6 public model Download this version
    • Submitted on: Dec 11, 2015 7:47:09 PM
    • Submitted by: Paolo Magni
    • With comment: Edited model metadata online.
  • Version: 4 public model Download this version
    • Submitted on: Dec 10, 2015 10:16:55 AM
    • Submitted by: Paolo Magni
    • With comment: Updated simulated data set

Name

Generated from MDL. MOG ID: hamren2008_mog

Independent Variables

T

Function Definitions

additiveError:realadditive:real=additive

Covariate Model: cm

Continuous Covariates

SEX
TREAT
CL
V

Parameter Model: pm

Random Variables

eta_FPG_BASELINEvm_mdl.ID~Normal2mean=0var=pm.OMEGA_FPG_BASELINE
eta_EC_50_FPGvm_mdl.ID~Normal2mean=0var=pm.OMEGA_EC_50_FPG
eta_FPG_WASHOUTvm_mdl.ID~Normal2mean=0var=pm.OMEGA_FPG_WASHOUT
eta_RES_FPGvm_mdl.ID~Normal2mean=0var=pm.OMEGA_RES_FPG
eta_GAMMAvm_mdl.ID~Normal2mean=0var=pm.OMEGA_GAMMA
eta_K_IN_RBCvm_mdl.ID~Normal2mean=0var=pm.OMEGA_K_IN_RBC
eta_EC_50_DILUTIONvm_mdl.ID~Normal2mean=0var=pm.OMEGA_EC_50_DILUTION
eta_RES_HBA1Cvm_mdl.ID~Normal2mean=0var=pm.OMEGA_RES_HBA1C
eta_RES_HBvm_mdl.ID~Normal2mean=0var=pm.OMEGA_RES_HB
eps_RES_FPGvm_err.DV~Normal2mean=0var=pm.SIGMA_RES_FPG
eps_RES_HBA1Cvm_err.DV~Normal2mean=0var=pm.SIGMA_RES_HBA1C
eps_RES_HBvm_err.DV~Normal2mean=0var=pm.SIGMA_RES_HB

Population Parameters

BETA_FPG_BASELINE
POP_FPG_BASELINE_N
K_OUT_FPG
E_MAX_FPG
BETA_EC_50_FPG
POP_EC_50_FPG_F
BETA_FPG_WASHOUT
POP_FPG_WASHOUT_N
POP_RES_FPG
POP_GAMMA
K_GLUCOSE
RBC_LIFESPAN
BETA_K_IN_RBC
POP_K_IN_RBC_F
E_MAX_DILUTION
POP_EC_50_DILUTION
K_OUT_DILUTION
POP_RES_HBA1C
POP_RES_HB
OMEGA_FPG_BASELINE
OMEGA_EC_50_FPG
OMEGA_FPG_WASHOUT
OMEGA_RES_FPG
OMEGA_GAMMA
OMEGA_K_IN_RBC
OMEGA_EC_50_DILUTION
OMEGA_RES_HBA1C
OMEGA_RES_HB
SIGMA_RES_FPG
SIGMA_RES_HBA1C
SIGMA_RES_HB
POP_EC_50_FPG={pm.POP_EC_50_FPG_Fifcm.SEX=2pm.POP_EC_50_FPG_F+pm.BETA_EC_50_FPGotherwise
POP_K_IN_RBC={pm.POP_K_IN_RBC_Fifcm.SEX=2pm.POP_K_IN_RBC_F+pm.BETA_K_IN_RBCotherwise
POP_FPG_BASELINE={pm.POP_FPG_BASELINE_Nifcm.TREAT=1pm.POP_FPG_BASELINE_N+pm.BETA_FPG_BASELINEotherwise
POP_FPG_WASHOUT={pm.POP_FPG_WASHOUT_Nifcm.TREAT=1pm.POP_FPG_WASHOUT_N+pm.BETA_FPG_WASHOUTotherwise

Individual Parameters

FPG_BASELINE=pm.POP_FPG_BASELINEpm.eta_FPG_BASELINE
EC_50_FPG=pm.POP_EC_50_FPGpm.eta_EC_50_FPG
FPG_WASHOUT=pm.POP_FPG_WASHOUTpm.eta_FPG_WASHOUT
RES_FPG=pm.POP_RES_FPGpm.eta_RES_FPG
GAMMA=pm.POP_GAMMApm.eta_GAMMA
K_IN_RBC=pm.POP_K_IN_RBCpm.eta_K_IN_RBC
EC_50_DILUTION=pm.POP_EC_50_DILUTIONpm.eta_EC_50_DILUTION
RES_HBA1C=pm.POP_RES_HBA1Cpm.eta_RES_HBA1C
RES_HB=pm.POP_RES_HBpm.eta_RES_HB
K_IN_FPG=pm.K_OUT_FPGpm.FPG_BASELINE
K_TR=4pm.RBC_LIFESPAN
NON_RBC10=pm.K_IN_RBCpm.K_TR+pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMA
NON_RBC20=pm.K_TRpm.NON_RBC10pm.K_TR+pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMA
NON_RBC30=pm.K_TRpm.NON_RBC20pm.K_TR+pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMA
NON_RBC40=pm.K_TRpm.NON_RBC30pm.K_TR+pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMA
RBC10=pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMApm.NON_RBC10pm.K_TR
RBC20=pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMApm.NON_RBC20+pm.K_TRpm.RBC10pm.K_TR
RBC30=pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMApm.NON_RBC30+pm.K_TRpm.RBC20pm.K_TR
RBC40=pm.K_GLUCOSEpm.FPG_BASELINEpm.GAMMApm.NON_RBC40+pm.K_TRpm.RBC30pm.K_TR
Kout=cm.CLcm.V

Structural Model: sm

Variables

CP=sm.QPcm.V
TQP=-pm.Koutsm.QPQPT=0=0
TFPG=pm.K_IN_FPG1+pm.FPG_WASHOUT-pm.K_OUT_FPGsm.FPG1+pm.E_MAX_FPGsm.CPpm.EC_50_FPG+sm.CPFPGT=0=pm.FPG_BASELINE
TNON_RBC1=pm.K_IN_RBC-pm.K_TR+pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC1NON_RBC1T=0=pm.NON_RBC10
TNON_RBC2=pm.K_TRsm.NON_RBC1-pm.K_TR+pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC2NON_RBC2T=0=pm.NON_RBC20
TNON_RBC3=pm.K_TRsm.NON_RBC2-pm.K_TR+pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC3NON_RBC3T=0=pm.NON_RBC30
TNON_RBC4=pm.K_TRsm.NON_RBC3-pm.K_TR+pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC4NON_RBC4T=0=pm.NON_RBC40
TRBC1=pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC1-pm.K_TRsm.RBC1RBC1T=0=pm.RBC10
TRBC2=pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC2+pm.K_TRsm.RBC1-pm.K_TRsm.RBC2RBC2T=0=pm.RBC20
TRBC3=pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC3+pm.K_TRsm.RBC2-pm.K_TRsm.RBC3RBC3T=0=pm.RBC30
TRBC4=pm.K_GLUCOSEsm.FPGpm.GAMMAsm.NON_RBC4+pm.K_TRsm.RBC3-pm.K_TRsm.RBC4RBC4T=0=pm.RBC40
TVHB=pm.K_OUT_DILUTION1+pm.E_MAX_DILUTIONsm.CPpm.EC_50_DILUTION+sm.CP-sm.VHBVHBT=0=1
TOTRBC=sm.NON_RBC1+sm.NON_RBC2+sm.NON_RBC3+sm.NON_RBC4+sm.RBC1+sm.RBC2+sm.RBC3+sm.RBC4
GLYRBC=sm.RBC1+sm.RBC2+sm.RBC3+sm.RBC4
HBA1C=100sm.GLYRBCsm.TOTRBC
HB=sm.TOTRBCsm.VHB
logHBA1C=lnsm.HBA1C
logFPG=lnsm.FPG
logHB=lnsm.HB

Observation Model: om1

Continuous Observation

Y1=sm.logHBA1C+additiveErroradditive=pm.RES_HBA1C+pm.eps_RES_HBA1C

Observation Model: om2

Continuous Observation

Y2=sm.logFPG+additiveErroradditive=pm.RES_FPG+pm.eps_RES_FPG

Observation Model: om3

Continuous Observation

Y3=sm.logHB+additiveErroradditive=pm.RES_HB+pm.eps_RES_HB

External Dataset

OID
nm_ds
Tool Format
NONMEM

File Specification

Format
csv
Delimiter
comma
File Location
Simulated_hamren2008_data_DAY.csv

Column Definitions

Column ID Position Column Type Value Type
ID
1
id
int
TIME
2
idv
real
DV
3
dv
real
AMT
4
dose
real
RATE
5
rate
real
CMT
6
cmt
int
CL
7
covariate
real
V
8
covariate
real
SEX
9
covariate
real
TREAT
10
covariate
real
ORIG
11
dvid
int
EVID
12
evid
real
DOSE
13
undefined
real

Column Mappings

Column Ref Modelling Mapping
ID
vm_mdl.ID
TIME
T
DV
{om1.Y1ifORIG=1om2.Y2ifORIG=2om3.Y3ifORIG=3
AMT
{sm.QPifAMT>0
CL
cm.CL
V
cm.V
SEX
cm.SEX
TREAT
cm.TREAT

Estimation Step

OID
estimStep_1
Dataset Reference
nm_ds

Parameters To Estimate

Parameter Initial Value Fixed? Limits
pm.BETA_FPG_BASELINE
-0.52
false
pm.POP_FPG_BASELINE_N
8.72
false
610
pm.K_OUT_FPG
0.0367
false
1.0E-40.1
pm.E_MAX_FPG
0.698
false
0.40.99
pm.BETA_EC_50_FPG
0.6
false
0
pm.POP_EC_50_FPG_F
0.88
false
0.24
pm.BETA_FPG_WASHOUT
0.164
false
0.011
pm.POP_FPG_WASHOUT_N
0
true
pm.POP_RES_FPG
0.0964
false
0.010.2
pm.POP_GAMMA
0.743
false
0.41.5
pm.K_GLUCOSE
1.81E-4
false
0
pm.RBC_LIFESPAN
135
false
1333
pm.BETA_K_IN_RBC
0.09
false
0
pm.POP_K_IN_RBC_F
1.02
false
0.12
pm.E_MAX_DILUTION
0.682
false
01
pm.POP_EC_50_DILUTION
8.25
false
0.0120
pm.K_OUT_DILUTION
0.0305
false
0
pm.POP_RES_HBA1C
0.0495
false
00.1
pm.POP_RES_HB
0.0298
false
00.1
pm.OMEGA_FPG_BASELINE
0.0196
false
pm.OMEGA_EC_50_FPG
1.21
false
pm.OMEGA_FPG_WASHOUT
0.64
false
pm.OMEGA_RES_FPG
0.13
false
pm.OMEGA_GAMMA
0.0035
false
pm.OMEGA_K_IN_RBC
0.005
false
pm.OMEGA_EC_50_DILUTION
0.31
false
pm.OMEGA_RES_HBA1C
0.068
false
pm.OMEGA_RES_HB
0.029
false
pm.SIGMA_RES_FPG
1
true
pm.SIGMA_RES_HBA1C
1
true
pm.SIGMA_RES_HB
1
true

Operations

Operation: 1

Op Type
generic
Operation Properties
Name Value
algo
focei

Step Dependencies

Step OID Preceding Steps
estimStep_1
 
Help