;; 1. Based on: 5b ;; 2. Description: Baseline model with 24h + 12h circadian rhythm + Slope effect model $PROBLEM Predictive QT project $INPUT ID DAY DROP TIME AMT CP EVID QT RR QTCF=DV MDV CPP BQTCF DOSE TSFD ; ID - Grouping variable on individual level ; DAY - The day the measurements were taken (DAY = 0 for TIME = 0) ; CLOCKTIME - Time of the day given as a time between 00:00 and 23:59 ; TIME - Time since start of study (TIME = 0 is at CLOCKTIME = 00:00 at DAY = 0) ; AMT - Amount (dose) of drug given in mg ; CP - Measured drug concentrations in plasma ; EVID - Event identification data item (0: Observation event; 1: Dose event; 2: Other type of event where the DV data item is ignored) ; QT - QT interval ; RR - RR interval - used to correct the QT interval for the heart rate ; QTCF - QT corrected for heart rate using the Fridericia formula - QTcF is the dependent variable ; MDV - Missing dependent variable (0: The dependent variable is observed; 1: The dependent variable is missing) ; CPP - Predicted drug concentration in plasma - Predicted using a separate PK model ; BQTCF - Baseline value of QTcF - Mean value of the baseline measurements of QTCF ; DOSE - The dose given - Same as amount but included on all data records ; TSFD - Time since (first) dose $DATA Simulated_dataset.csv IGNORE = # IGNORE = (EVID == 1) $PRED ;---- Baseline model ----------------------------------------------- BASE = THETA(1) * EXP(ETA(1)) ; Baseline QTcF with between subject varaibility (BSV) ;---- Circadian rhythm --------------------------------------------- AMP24 = THETA(2) * EXP(ETA(2)) ; The amplitude of the 24h circadian rhythm SHFT24 = THETA(3) + ETA(3) ; The peak shift of the 24h circadian rhythm AMP12 = THETA(4) * EXP(ETA(4)) ; The amplitude of the 12h circadian rhythm SHFT12 = THETA(5) + ETA(5) ; The peak shift of the 12h circadian rhythm CIRC24 = AMP24 * COS(2 * 3.14 * (TIME - SHFT24)/24) ; 24 hour circadian rhythm CIRC12 = AMP12 * COS(2 * 3.14 * (TIME - SHFT12)/12) ; 12 hour circadian rhythm RYTM = BASE * (1 + CIRC24 + CIRC12) ; Change in baseline QTcF over the day due to circadian rhythm ;---- Effect model ------------------------------------------------- SLOPE = THETA(6) + ETA(6) ; Linear effect EFF = SLOPE * CPP ; Linear effect ;---- Error Model -------------------------------------------------- IPRED = RYTM + EFF ; Linear direct effect model W = IPRED * SIGMA(1,1) IWRES = (QTCF - IPRED)/W Y = IPRED + IPRED*EPS(1) ;---- Initial estimates -------------------------------------------- $THETA (0, 372.6) ; 1 Baseline QTcF [ms] $THETA (0, 0.01844) ; 2 Amplitude 24h $THETA (0, 3.62) ; 3 Peak shift 24h $THETA (0, 0.01392) ; 4 Amplitude 12h circadian rhythm $THETA (0, 1.301) ; 5 Peak shift 12h circadian rhythm $THETA (0, 0.003441) ; 6 Slope (linear effect) parameter $OMEGA 0.0392 ; 1 Baseline QTcF - (BSV) $OMEGA 0.3523 ; 2 Amplitude 24h - BSV $OMEGA 2.007 ; 3 Peak shift 24h - BSV $OMEGA 0.3848 ; 4 Amplitude 12h - BSV $OMEGA 0.993 ; 5 Peak shift 12h - BSV $OMEGA 0.0001 ; 6 Slope - BSV $SIGMA 0.01802 ; 1 Proportional residual error [ms] $ESTIMATION METHOD=1 MAXEVALS=99999 INTER NOABORT PRINT=5 $COVARIANCE $TABLE ID TIME DV PRED IPRED WRES IWRES CWRES CWRESI CIWRESI NOPRINT ONEHEADER FILE=sdtab7b $TABLE ID TIME DV BASE AMP24 SHFT24 AMP12 SHFT12 SLOPE ETAS(1:6) NOPRINT ONEHEADER FILE=patab7b $TABLE ID TIME DV AMT CP EVID QT RR MDV CPP BQTCF DOSE TSFD RYTM NOPRINT ONEHEADER FILE=mytab7b